Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 26
1.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 257-263, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38430013

Granulosa cells are somatic cells located inside follicles that play a crucial role in the growth and development of follicles. Quercetin and tanshinone are two key monomers in traditional Chinese medicine that have antioxidant and anti-aging properties. The KGN cell apoptosis model caused by triptolide (TP) was employed in this work to investigate granulosa cell death and medication rescue. Quercetin and tanshinone therapy suppressed KGN cell death and oxidation while also regulating the expression of critical apoptosis and oxidation-related markers such as B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax). Further research revealed that the effects of Quercetin and Tanshinone were accomplished via deacetylation of FOXO3A in the cytoplasm and mitochondria via the SIRT1/SIRT3-FOXO3a axis. In summary, Quercetin and tanshinone protect KGN cells from apoptosis by reducing mitochondrial apoptosis and oxidation via the SIRT1/SIRT3-FOXO3a axis.


Abietanes , Sirtuin 3 , Female , Humans , Apoptosis , Autophagy/drug effects , Mitochondria/drug effects , Quercetin/pharmacology , Sirtuin 1/drug effects , Sirtuin 1/metabolism , Sirtuin 3/drug effects , Sirtuin 3/metabolism , Forkhead Box Protein O3/drug effects
2.
Nutrition ; 118: 112273, 2024 Feb.
Article En | MEDLINE | ID: mdl-38096603

BACKGROUND: Skeletal muscle synthesizes, stores, and releases body L-glutamine (GLN). Muscle atrophy due to disabling diseases triggers the activation of proteolytic and pro-apoptotic cell signaling, thus impairing the body's capacity to manage GLN content. This situation has a poor therapeutic prognosis. OBJECTIVE: Evaluating if oral GLN supplementation can attenuate muscle wasting mediated by elevated plasma cortisol and activation of caspase-3, p38MAPK, and FOXO3a signaling pathways in soleus and gastrocnemius muscles of rats submitted to 14-day bilateral hindlimbs immobilization. METHODS: Animals were randomly distributed into six groups: non-immobilized rats (Control), control orally supplemented with GLN (1 g kg-1) in solution with L-alanine (ALA: 0.61 g kg-1; GLN+ALA), control orally supplemented with dipeptide L-alanyl-L-glutamine (DIP; 1.49 g kg-1), hindlimbs immobilized rats (IMOB), IMOB orally GLN+ALA supplemented (GLN+ALA-IMOB), and IMOB orally DIP supplemented (DIP-IMOB). Plasma and muscle GLN concentration, plasma cortisol level, muscle caspase-3 activity, muscle p38MAPK and FOXO3a protein content (total and phosphorylated forms), and muscle cross-sectional area (CSA) were measured. RESULTS: Compared to controls, IMOB rats presented: a) increased plasma cortisol levels; b) decreased plasma and muscle GLN concentration; c) increased muscle caspase-3 activity; d) increased total and phosphorylated p38MAPK protein content; e) increased FOXO3a and decreased phosphorylated FOXO3a protein content; f) reduced muscle weight and CSA befitting to atrophy. Oral supplementation with GLN+ALA and DIP was able to significantly attenuate these effects. CONCLUSIONS: These findings attest that oral GLN supplementation in GLN+ALA solution or DIP forms attenuates rats' skeletal muscle mass wasting caused by disuse-mediated muscle atrophy.


Glutamine , Hydrocortisone , Muscular Atrophy , Animals , Rats , Caspase 3/metabolism , Dietary Supplements , Dipeptides/metabolism , Dipeptides/pharmacology , Dipeptides/therapeutic use , Glutamine/pharmacology , Muscle, Skeletal , Muscular Atrophy/drug therapy , Muscular Atrophy/etiology , Muscular Atrophy/metabolism , Signal Transduction , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/metabolism , p38 Mitogen-Activated Protein Kinases/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
3.
Neuroreport ; 33(13): 549-560, 2022 09 07.
Article En | MEDLINE | ID: mdl-36049159

OBJECTIVE: Bergenin (BGN) is a C-glycoside of 4-O-methylgallic acid with anti-inflammatory, antioxidant, and tissue-repairing abilities. Here, we probed the roles and mechanisms of BGN in ischemic stroke-mediated cerebral injury. METHODS: The middle cerebral artery occlusion (MCAO) model was established in mice, which were injected intraperitoneally with varying concentrations of BGN (10, 20, and 40 mg/kg). The modified neurological severity score (mNSS) and the water maze experiment were adopted to evaluate mice's neural functions (movement and memory). The brain edema was assessed by the dry and wet method. TdT-mediated dUTP nick end labeling (TUNEL)-labeled apoptotic neurons and Iba1-labeled microglia in the cortex were measured by immunohistochemistry (IHC). Quantitative reverse transcription-PCR and ELISA were implemented to determine the expression of inflammatory cytokines (TNFα, IL-1ß, and IL-6), neurotrophic factors (BDNF and VEGF), and oxidative stress factors (SOD and MDA) in brain tissues. The profiles of Sirt1, FOXO3a, Nrf2, NF-κB, and STAT6 in brain tissues were checked by western blot. RESULTS: BGN significantly improved MCAO mice's cognitive, learning, and motor functions, reduced brain edema, hampered the production of inflammatory factors and oxidative stress mediators, and suppressed neuronal apoptosis. Additionally, BGN dampened the expression of proinflammatory cytokines and upregulated neurotrophic factors and oxidative stress factors in ischemic brain tissues of MCAO mice. Meanwhile, BGN reduced the expression of inflammatory cytokines and oxidative stressors in oxygen-glucose deprivation/reoxygenation-induced BV2 microglia. Further mechanistic studies revealed that BGN concentration dependently elevated the profiles of Sirt1, FOXO3a, STAT6, and Nrf2, and abated the NF-κB phosphorylation. CONCLUSION: BGN protects against ischemic stroke in mice by boosting the Sirt1/FOXO3a pathway, suggesting its potential as a therapeutic agent for ischemic stroke.


Benzopyrans , Brain Edema , Ischemic Stroke , Neuroprotective Agents , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Benzopyrans/pharmacology , Brain Edema/drug therapy , Cytokines/metabolism , Disease Models, Animal , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/metabolism , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/drug therapy , Mice , NF-E2-Related Factor 2/metabolism , NF-kappa B/drug effects , NF-kappa B/metabolism , Nerve Growth Factors/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Sirtuin 1/drug effects , Sirtuin 1/metabolism
4.
Oxid Med Cell Longev ; 2022: 9468040, 2022.
Article En | MEDLINE | ID: mdl-35910845

Osteoarthritis (OA) has been reported as a progressive disease in the elderly, primarily characterized by degenerated articular cartilage. There has been no satisfactory drug for the treatment of OA. DL-3-n-butylphthalide (NBP), a small molecule compound extracted from celery seeds, may have antiapoptotic, antioxidant, and anti-inflammatory activities in numerous studies. However, the effects of NBP on OA and its mechanisms have been rarely reported. In this study, the effect of NBP on OA in vitro and in vivo and its possible mechanism were investigated. The results showed that NBP injection into the knee joint inhibited osteoarthritis development in a rat model of osteoarthritis induced by DMM+ACLT. NBP could increase the expressions of extracellular matrix-related components (such as type II collagen, aggrecan, proteoglycan 4, and SRY-box 9) in human osteoarthritic chondrocytes and cartilage explants. Moreover, NBP promoted the expressions of SOD and CAT. NBP upregulated the expression of FoxO3a by inhibiting the PI3K/AKT pathway, which subsequently inhibited the apoptosis of human OA chondrocytes. In conclusion, NBP promotes cartilage extracellular matrix synthesis and inhibits osteoarthritis development and the underlying mechanism related to the activation of FoxO3a.


Benzofurans , Cartilage, Articular , Forkhead Box Protein O3 , Osteoarthritis , Aged , Animals , Benzofurans/pharmacology , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/metabolism , Humans , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Rats
5.
Cells ; 10(10)2021 09 23.
Article En | MEDLINE | ID: mdl-34685502

Valproic acid (VPA) is an antiepileptic drug found to induce mitochondrial dysfunction and autophagy in cancer cell lines. We treated the SH-SY5Y cell line with various concentrations of VPA (1, 5, and 10 mM). The treatment decreased cell viability, ATP production, and mitochondrial membrane potential and increased reactive oxygen species production. In addition, the mitochondrial DNA copy number increased after VPA treatment in a dose-dependent manner. Western blotting showed that the levels of mitochondrial biogenesis-related proteins (PGC-1α, TFAM, and COX4) increased, though estrogen-related receptor expression decreased after VPA treatment. Further, VPA treatment increased the total and acetylated FOXO3a protein levels. Although SIRT1 expression was decreased, SIRT3 expression was increased, which regulated FOXO3 acetylation in the mitochondria. Furthermore, VPA treatment induced autophagy via increased LC3-II levels and decreased p62 expression and mTOR phosphorylation. We suggest that VPA treatment induces mitochondrial biogenesis and autophagy via changes in FOXO3a expression and posttranslational modification in the SH-SY5Y cell line.


Autophagy/drug effects , Forkhead Box Protein O3/drug effects , Mitochondria/drug effects , Valproic Acid/pharmacology , Anticonvulsants/pharmacology , Cell Survival/drug effects , DNA, Mitochondrial/drug effects , DNA, Mitochondrial/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Organelle Biogenesis
6.
Mol Immunol ; 138: 150-160, 2021 10.
Article En | MEDLINE | ID: mdl-34428620

Studies showed that ellagic acid (EA) can significantly improve kidney function, but the renal-protective effects of EA and the potential mechanism require adequate elucidation. This study investigated the mechanisms of EA in chronic renal failure (CRF) injury. A rat model of CRF was established by 5/6 nephrectomy. The body weight, urine volume and urine protein content of the rat model of CRF with EA treatment (0/20/40 mg/kg/day) were recorded. Hematoxylin&eosin (H&E) staining, Masson staining and TUNEL were used for histopathological observation. Serum levels of creatinine value, blood urea nitrogen, superoxide dismutase, glutathione, malondialdehyde, tumor necrosis factor-α, interleukin-6 and intercellular cell adhesion molecule-1 were determined using enzyme-linked immunosorbent assay (ELISA) kits. The expressions of genes involved in CRF damage were detected by quantitative real-time PCR (qRT-PCR) and western blot. The relationships among EA, miR-182 and FOXO3a were verified by TargetScan 7.2, dual-luciferase assay and rescue experiments. In this study, EA treatment significantly increased the body weight, but reduced urination and urine protein content, renal tissue damage, collagen deposition, inflammation and the contents of serum creatinine (Scr), blood urea nitrogen (BUN), and malondialdehyde (MDA), and improved the antioxidant capacity of CRF rats. Moreover, EA treatment inhibited miR-182, TGF-ß1, fibronectin and Bax levels, and promoted those of FOXO3a and Bcl-2 in CRF rats. Additionally, miR-182 specifically targeted FOXO3a, and effectively reduced the renal-protective effect of EA. Further research found that overexpressed FOXO3a partially reversed the inhibitory effect of miR-182 on CRF rats. Our results suggest that EA might reduce CRF injury in rats via miR-182/FOXO3a.


Ellagic Acid/pharmacology , Forkhead Box Protein O3/metabolism , Kidney Failure, Chronic/pathology , MicroRNAs/metabolism , Protective Agents/pharmacology , Animals , Forkhead Box Protein O3/drug effects , Kidney/drug effects , Kidney Failure, Chronic/metabolism , Male , MicroRNAs/drug effects , Rats , Rats, Sprague-Dawley
7.
J Neurophysiol ; 125(4): 1202-1212, 2021 04 01.
Article En | MEDLINE | ID: mdl-33625942

Cisplatin is an antitumor drug that is widely used for the treatment of various solid tumors. Unfortunately, patients are often troubled by serious side effects, especially hearing loss. Up to now, there have been no clear and effective measures to prevent cisplatin-induced ototoxicity in clinical use. We explored the role of autophagy and the efficacy of metformin in cisplatin-induced ototoxicity in cells, zebrafish, and mice. Furthermore, the underlying molecular mechanism of how metformin affects cisplatin-induced ototoxicity was examined. In in vitro experiments, autophagy levels in HEI-OC1 cells were assessed using fluorescence and Western blot analyses. In in vivo experiments, whether metformin had a protective effect against cisplatin ototoxicity was validated in zebrafish and C57BL/6 mice. The results showed that cisplatin induced autophagy activation in HEI-OC1 cells. Metformin exerted antagonistic effects against cisplatin ototoxicity in HEI-OC1 cells, zebrafish, and mice. Notably, metformin activated autophagy and increased the expression levels of the adenosine monophosphate-activated protein kinase (AMPK) and the transcription factor Forkhead box protein O3 (FOXO3a), whereas cells with AMPK silencing displayed otherwise. Our findings indicate that metformin alleviates cisplatin-induced ototoxicity possibly through AMPK/FOXO3a-mediated autophagy machinery. This study underpins further researches on the prevention and treatment of cisplatin ototoxicity.NEW & NOTEWORTHY Cisplatin is an antitumor drug that is widely used for the treatment of various solid tumors. Up to now, there have been no clear and effective measures to prevent cisplatin-induced ototoxicity in clinical use. We investigated the protective effect of metformin on cisplatin ototoxicity in vitro and in vivo. Our findings indicate that metformin alleviates cisplatin-induced ototoxicity possibly through AMPK/FOXO3a-mediated autophagy machinery. This study underpins further researches on the prevention and treatment of cisplatin ototoxicity.


Antineoplastic Agents/toxicity , Autophagy/drug effects , Cisplatin/toxicity , Forkhead Box Protein O3/drug effects , Hair Cells, Auditory/drug effects , Metformin/pharmacology , Neuroprotective Agents/pharmacology , Ototoxicity/drug therapy , Ototoxicity/etiology , Protein Kinases/drug effects , AMP-Activated Protein Kinase Kinases , Animals , Cells, Cultured , Disease Models, Animal , Male , Metformin/administration & dosage , Mice , Mice, Inbred C57BL , Neuroprotective Agents/administration & dosage , Zebrafish
8.
J Appl Toxicol ; 41(4): 618-631, 2021 04.
Article En | MEDLINE | ID: mdl-33029813

Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of di(2-ethylhexyl)phthalate (DEHP), is known to exert cardiotoxicity. The aim of the present study was to investigate the role of forkhead box O3a (FOXO3a) in MEHP-induced human AC16 cardiomyocyte injuries. MEHP reduced cell viability and mitochondrial membrane potential (ΔΨm), whereas it increased lactate dehydrogenase (LDH) leakage, production of reactive oxygen species (ROS), and apoptosis in cardiomyocytes. The expression of FOXO3a and its target genes, mitochondrial superoxide dismutase (Mn-SOD) and apoptosis repressor with caspase recruitment domain (ARC), increased after MEHP exposure, but the expression of p-FOXO3a protein was decreased. Overexpression of FOXO3a decreased the production of ROS and the apoptosis rate induced by MEHP, and the expression of Mn-SOD and ARC was further increased after MEHP exposure. In contrast, knockdown of FOXO3a resulted in increased ROS production and apoptosis and suppressed the expression of Mn-SOD and ARC in the presence of MEHP. However, overexpression or knockdown of FOXO3a did not affect MEHP-induced loss of ΔΨm. In conclusion, the loss of ΔΨm and apoptosis are involved in MEHP-induced cardiomyocyte toxicity. Activation of FOXO3a defends against MEHP-induced oxidative stress and apoptosis by upregulating the expression of Mn-SOD and ARC in AC16 cardiomyocytes.


Apoptosis/drug effects , Cell Survival/drug effects , Diethylhexyl Phthalate/toxicity , Forkhead Box Protein O3/drug effects , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cardiotoxicity/etiology , Cardiotoxicity/physiopathology , Cells, Cultured/drug effects , Diethylhexyl Phthalate/analogs & derivatives , Humans
9.
Int Immunopharmacol ; 90: 107268, 2021 Jan.
Article En | MEDLINE | ID: mdl-33316740

Inflammation plays an important role in the pathogenesis of cerebral ischemia. Syringin (SYR) is an active substance isolated from Acanthopanax senticosus plants, and possesses anti-inflammatory and neuroprotective properties. However, its effects on cerebral ischemic injury, as well as the underlying molecular events, are still unclear. The purpose of this study was to investigate the effect of SYR in a rat model of cerebral ischemia and address the related molecular mechanism. A middle cerebral artery occlusion/reperfusion model (MCAO) was used to simulate ischemic injury. SYR treatment clearly reduced the infarct volume, decreased cerebral water content, improved the neurological score, and attenuated neuronal death. Moreover, SYR decreased the expression of NF-κB, IL-1ß, IL-6, TNF-α, and MPO, promoted FOXO3a phosphorylation and cytoplasmic retention, and inhibited the nuclear translocation of NF-κB. FOXO3a knockdown by RNA interference significantly prevented SYR-induced inhibition of NF-κB-mediated inflammation. Confocal microscopy revealed that SYR reduced NF-κB translocation to the nucleus, and FOXO3a silencing reversed this effect. Finally, immunofluorescence and CO-IP experiments showed that SYR promoted the interaction between FOXO3a and NF-κB. In conclusion, SYR exerted a protective effect against brain I/R injury by reducing the inflammation accompanying cerebral ischemia. This effect was mediated by the FOXO3a /NF-κB pathway.


Brain Ischemia/drug therapy , Forkhead Box Protein O3/drug effects , Glucosides/pharmacology , NF-kappa B/drug effects , Neuroprotective Agents/pharmacology , Phenylpropionates/pharmacology , Signal Transduction/drug effects , Animals , Behavior, Animal/drug effects , Body Water/metabolism , Brain Ischemia/genetics , Cell Death/drug effects , Cytokines/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Male , Neurons/pathology , Phosphorylation , Rats , Rats, Sprague-Dawley
10.
Am J Physiol Endocrinol Metab ; 319(1): E217-E231, 2020 07 01.
Article En | MEDLINE | ID: mdl-32516026

We previously demonstrated that circulating extracellular vesicles (EVs) from patients with valvular heart disease (VHD; vEVs) contain inflammatory components and inhibit endothelium-dependent vasodilation. Neutrophil chemotaxis plays a key role in renal dysfunction, and dexmedetomidine (DEX) can reduce renal dysfunction in cardiac surgery. However, the roles of vEVs in neutrophil chemotaxis and effects of DEX on vEVs are unknown. Here, we investigated the impact of vEVs on neutrophil chemotaxis in kidneys and the influence of DEX on vEVs. Circulating EVs were isolated from healthy subjects and patients with VHD. The effects of EVs on chemokine generation, forkhead box protein O3a (FOXO3a) pathway activation and neutrophil chemotaxis on cultured human umbilical vein endothelial cells (HUVECs) and kidneys in mice and the influence of DEX on EVs were detected. vEVs increased FOXO3a expression, decreased phosphorylation of Akt and FOXO3a, promoted FOXO3a nuclear translocation, and activated the FOXO3a signaling pathway in vitro. DEX pretreatment reduced vEV-induced CXCL4 and CCL5 expression and neutrophil chemotaxis in cultured HUVECs via the FOXO3a signaling pathway. vEVs were also found to suppress Akt phosphorylation and activate FOXO3a signaling to increase plasma levels of CXCL4 and CCL5 and neutrophil accumulation in kidney. The overall mechanism was inhibited in vivo with DEX pretreatment. Our data demonstrated that vEVs induced CXCL4-CCL5 to stimulate neutrophil infiltration in kidney, which can be inhibited by DEX via the FOXO3a signaling. Our findings reveal a unique mechanism involving vEVs in inducing neutrophils chemotaxis and may provide a novel basis for using DEX in reducing renal dysfunction in valvular heart surgery.


Chemotaxis, Leukocyte/immunology , Extracellular Vesicles/immunology , Heart Valve Diseases/immunology , Human Umbilical Vein Endothelial Cells/immunology , Kidney/immunology , Neutrophils/immunology , Renal Insufficiency/immunology , Adrenergic alpha-2 Receptor Agonists/pharmacology , Adult , Animals , Case-Control Studies , Chemokine CCL5/drug effects , Chemokine CCL5/immunology , Chemokine CCL5/metabolism , Chemotaxis, Leukocyte/drug effects , Dexmedetomidine/pharmacology , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Female , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/immunology , Forkhead Box Protein O3/metabolism , Heart Valve Diseases/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation , Kidney/drug effects , Kidney/metabolism , Male , Mice , Middle Aged , Neutrophils/drug effects , Phosphorylation , Platelet Factor 4/drug effects , Platelet Factor 4/immunology , Platelet Factor 4/metabolism , Proto-Oncogene Proteins c-akt/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Renal Insufficiency/metabolism , Vasodilation
11.
Med Sci Monit ; 26: e924372, 2020 Jun 27.
Article En | MEDLINE | ID: mdl-32592386

BACKGROUND Diabetic nephropathy (DN) is one of the chronic microvascular complications of diabetes. This study focused on the protective effects of pyrroloquinoline quinone (PQQ) on oxidative stress (OS) in DN. MATERIAL AND METHODS Thirty Sprague Dawley rats were randomly selected for this study; 10 rats were randomly selected as the control group. The other 20 rats were established for the DN model. After establishment of the successful model, the DN model rats were randomly divided into a DN group and a PQQ group. The PQQ group was fed with a PQQ diet. Blood urea nitrogen (BUN), serum creatinine (SCr), and blood glucose levels were measured in each group, and OS-related protein expression and AMPK pathway were detected by western blot and quantitative real-time polymerase chain reaction (qRT-PCR). At the same time, we constructed a DN model by culturing NRK-52E cells with high glucose to detect the molecular mechanisms. RESULTS The kidney function of the DN group was significantly decreased, SCr and BUN levels were significantly increased, and the renal structure under the microscope was disordered, and interstitial edema was obvious. The expression of SOD1, SOD2, GPX1, and GPX3 were significantly decreased, and the level of reactive oxygen species (ROS) was significantly increased. PQQ treatment can effectively alleviate renal function, improve structural damage, and inhibit OS. In vivo, PQQ can effectively inhibit high glucose-induced OS damage and activate the AMPK/FOXO3a signaling pathway. CONCLUSIONS PQQ improves renal structural damage and functional damage, and protects kidney cells in DN by inhibiting OS, which may be related to activating the AMPK/FOXO3a pathway.


Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/genetics , Free Radical Scavengers/pharmacology , Kidney/drug effects , Oxidative Stress/drug effects , PQQ Cofactor/pharmacology , Adenylate Kinase/drug effects , Adenylate Kinase/metabolism , Animals , Blood Glucose/metabolism , Blood Urea Nitrogen , Cell Line , Creatinine/metabolism , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/metabolism , Glutathione Peroxidase/drug effects , Glutathione Peroxidase/genetics , Kidney/metabolism , Kidney/pathology , Random Allocation , Rats , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Signal Transduction , Superoxide Dismutase/drug effects , Superoxide Dismutase/genetics , Superoxide Dismutase-1/drug effects , Superoxide Dismutase-1/genetics , Glutathione Peroxidase GPX1
12.
Alcohol Clin Exp Res ; 44(6): 1204-1213, 2020 06.
Article En | MEDLINE | ID: mdl-32304578

BACKGROUND: During bone fracture repair, resident mesenchymal stem cells (MSCs) differentiate into chondrocytes, to form a cartilaginous fracture callus, and osteoblasts, to ossify the collagen matrix. Our laboratory previously reported that alcohol administration led to decreased cartilage formation within the fracture callus of rodents and this effect was mitigated by postfracture antioxidant treatment. Forkhead box protein O (FoxO) transcription factors are activated in response to intracellular reactive oxygen species (ROS), and alcohol has been shown to increase ROS. Activation of FoxOs has also been shown to inhibit canonical Wnt signaling, a necessary pathway for MSC differentiation. These findings have led to our hypothesis that alcohol exposure decreases osteochondrogenic differentiation of MSCs through the activation of FoxOs. METHODS: Primary rat MSCs were treated with ethanol (EtOH) and assayed for FoxO expression, FoxO activation, and downstream target expression. Next, MSCs were differentiated toward osteogenic or chondrogenic lineages in the presence of 50 mM EtOH and alterations in osteochondral lineage marker expression were determined. Lastly, osteochondral differentiation experiments were repeated with FoxO1/3 knockdown or with FoxO1/3 inhibitor AS1842856 and osteochondral lineage marker expression was determined. RESULTS: EtOH increased the expression of FoxO3a at mRNA and protein levels in primary cultured MSCs. This was accompanied by an increase in FoxO1 nuclear localization, FoxO1 activation, and downstream catalase expression. Moreover, EtOH exposure decreased expression of osteogenic and chondrogenic lineage markers. FoxO1/3 knockdown restored proosteogenic and prochondrogenic lineage marker expression in the presence of 50 mM EtOH. However, FoxO1/3 inhibitor only restored proosteogenic lineage marker expression. CONCLUSIONS: These data show that EtOH has the ability to inhibit MSC differentiation, and this ability may rely, at least partially, on the activation of FoxO transcription factors.


Cell Differentiation/drug effects , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Forkhead Box Protein O3/drug effects , Fracture Healing/drug effects , Mesenchymal Stem Cells/drug effects , Nerve Tissue Proteins/drug effects , Animals , Bony Callus/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrogenesis/drug effects , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Gene Knockdown Techniques , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects , Primary Cell Culture , Rats
13.
Cell Death Dis ; 11(3): 158, 2020 03 02.
Article En | MEDLINE | ID: mdl-32123161

Nowadays, immune diseases are a large burden in healthcare. Mesenchymal stem cells (MSCs) have prominent ability in immunomodulation and have been applicated on treating many immune-related diseases. However, the clinical outcomes can be disparate and sometimes completely counterproductive beyond explanation of cell heterogeneity. The theory of immunomodulation plasticity in MSCs has then emerged to explain that MSCs can be induced into proinflammatory MSC1 or anti-inflammatory MSC2 responding to different immune environment. It would be safer and more efficient if we could induce MSCs into a certain immune phenotype, in most cases MSC2, prior to medical treatment. In this study, we screened and identified a classical FDA-approved drug, chlorzoxazone (CZ). Unlike traditional method induced by IFN-γ, CZ can induce MSC into MSC2 phenotype and enhance the immunosuppressive capacity without elevation of immunogenicity of MSCs. CZ-treated MSCs can better inhibit T cells activation and proliferation, promote expression of IDO and other immune mediators in vitro, and alleviate inflammatory infiltration and tissue damage in acute kidney injury rat model more effectively. Moreover, we discovered that CZ modulates phosphorylation of transcriptional factor forkhead box O3 (FOXO3) independent of classical AKT or ERK signaling pathways, to promote expression of downstream immune-related genes, therefore contributing to augmentation of MSCs immunosuppressive capacity. Our study established a novel and effective approach to induce MSC2, which is ready for clinical application.


Chlorzoxazone/pharmacology , Forkhead Box Protein O3/drug effects , Inflammation/drug therapy , Mesenchymal Stem Cells/drug effects , Animals , Cell Proliferation/drug effects , Chlorzoxazone/metabolism , Humans , Inflammation/metabolism , Lymphocyte Activation/drug effects , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Pharmaceutical Preparations/metabolism , Rats, Wistar
14.
Eur Rev Med Pharmacol Sci ; 23(18): 7892-7898, 2019 Sep.
Article En | MEDLINE | ID: mdl-31599414

OBJECTIVE: FoxO3a is a well-defined tumor suppressor gene in the forkhead transcription factor O subfamily (FoxO), and its reduction is related to the occurrence of various tumors. It was found that miR-223 expression is abnormally elevated in pancreatic cancer tissues. Bioinformatics analysis revealed a targeted complementary binding relationship between miR-223 and FoxO3a. This study explored whether miR-155 regulates the expression of FoxO3a and affects the proliferation, apoptosis, and cisplatin (CDDP) resistance of oral cancer cells. MATERIALS AND METHODS: Dual-Luciferase reporter gene assay validated the targeted relationship between miR-223 and FoxO3a. The CDDP-resistant pancreatic cancer cell line BXPC3/CDDP was established, and the expressions of miR-223 and FoxO3a were compared. BXPC3/CDDP cells were divided into miR-NC group and miR-223 inhibitor group. QRT-PCR was adopted to test miR-223 and FoxO3a mRNA expressions. Western blot was performed to determine FoxO3a protein expression. Cell apoptosis was detected by flow cytometry and cell proliferation was detected by EdU staining. RESULTS: There was a targeted regulatory relationship between miR-223 and FoxO3a mRNA. The expression of miR-223 was significantly higher, while the expression of FoxO3a mRNA and protein was significantly lower in BXPC3/CDDP cells than that in BXPC3 cells. Cell Counting Kit-8 (CCK-8) experiments showed that the same concentration of CDDP exhibited significantly lower proliferation inhibition in BXPC3/CDDP cells than BXPC3 cells. Compared with miR-NC group, transfection of miR-223 inhibitor significantly increased the expression of FoxO3a in BXPC3/CDDP cells, which significantly attenuated cell proliferation and enhanced apoptosis in CDDP-treated cells. CONCLUSIONS: Increased expression of miR-233 was associated with CDDP resistance in pancreatic cancer cells. Inhibition of miR-223 expression upregulated FoxO3a expression, restrained pancreatic cancer cell proliferation, promoted cell apoptosis, and enhanced CDDP sensitivity in pancreatic cancer cells.


Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Forkhead Box Protein O3/drug effects , MicroRNAs/genetics , Pancreatic Neoplasms/genetics , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Case-Control Studies , Cell Line, Tumor/drug effects , Cell Line, Tumor/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Computational Biology/methods , Drug Resistance, Neoplasm/genetics , Forkhead Box Protein O3/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Humans , Mouth Neoplasms/genetics , Pancreatic Neoplasms/mortality , Survival Analysis , Up-Regulation/drug effects
15.
Toxicol Lett ; 315: 1-8, 2019 Oct 15.
Article En | MEDLINE | ID: mdl-31421153

Arsenic trioxide (As2O3) has been used clinically for the treatment of acute promyelocytic leukemia and some solid tumors. However, the mechanisms of its anti-tumor effects are still elusive. Angiogenesis is a key process for tumor initiation, and increasing evidence has supported the role of anti-angiogenesis caused by arsenic in tumor suppression, although the detailed mechanism is not well understood. In the present study, we found that As2O3 significantly inhibited the angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, and this was mediated by the upregulation of FoxO3a. Knockdown of FoxO3a could restore the angiogenic ability of HUVECs. Moreover, vascular endothelial cell-specific knockout of FoxO3a in mice could disrupt the anti-angiogenesis effect of As2O3 and endow the tumors with resistance to As2O3 treatments. Our results revealed a new mechanism by which As2O3 suppresses angiogenesis and tumor growth.


Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Arsenic Trioxide/pharmacology , Arsenic Trioxide/therapeutic use , Forkhead Box Protein O3/drug effects , Leukemia, Promyelocytic, Acute/drug therapy , Up-Regulation/drug effects , Animals , Antineoplastic Agents/pharmacology , Cell Enlargement/drug effects , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Epithelial Cells/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Umbilical Veins/drug effects
16.
Acta Cir Bras ; 34(5): e201900502, 2019.
Article En | MEDLINE | ID: mdl-31166463

PURPOSE: To investigate inhibitory effect of Astragalus polysaccharide (APS) on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt2 signaling pathway. METHODS: Postmenopausal osteoporosis (PMOP) animal model was developed by excising the bilateral ovaries of rats. The model rats were administered with APS (200 mg/kg, 400 mg/kg, 800 mg/kg) by intragastric administration once daily for 12 weeks. Bone density, bone metabolism index and oxidative stress index were measured in all groups. Furthermore, the regulation of APS of FoxO3a / Wnt2 signaling pathway was observed. RESULTS: APS has an estrogen-like effect, which can increase bone mass, lower serum ALP and BGP values, increase blood calcium content, and increase bone density of the femur and vertebrae in rats. At the same time, APS can increase the bone mineral content of the femur, increase the maximum stress, maximum load and elastic modulus of the ovariectomized rats, improve oxidative stress in rats by increasing the gene expression of ß-catenin and Wnt2 mRNA and inhibiting the gene expression of FoxO3a mRNA. CONCLUSION: Astragalus polysaccharide can effectively alleviate oxidative stress-mediated osteoporosis in ovariectomized rats, which may be related to its regulation of FoxO3a/Wnt2/ß-catenin pathway.


Astragalus Plant/chemistry , Forkhead Box Protein O3/drug effects , Osteoporosis/drug therapy , Polysaccharides/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Bone Density/drug effects , Female , Femur/drug effects , Femur/metabolism , Forkhead Box Protein O3/analysis , Gene Expression/drug effects , Low Density Lipoprotein Receptor-Related Protein-5/analysis , Low Density Lipoprotein Receptor-Related Protein-5/drug effects , Osteoporosis/metabolism , Ovariectomy , Oxidative Stress/drug effects , Oxidative Stress/physiology , Random Allocation , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reference Values , Reproducibility of Results , Treatment Outcome , Wnt Signaling Pathway/physiology , Wnt2 Protein/analysis , Wnt2 Protein/drug effects , beta Catenin/analysis , beta Catenin/drug effects
17.
Muscle Nerve ; 60(2): 192-201, 2019 08.
Article En | MEDLINE | ID: mdl-31093982

INTRODUCTION: We recently demonstrated the beneficial effects of 4-aminopyridine (4-AP), a potassium channel blocker, in enhancing remyelination and recovery of nerve conduction velocity and motor function after sciatic nerve crush injury in mice. Although muscle atrophy occurs very rapidly after nerve injury, the effect of 4-AP on muscle atrophy and intrinsic muscle contractile function is largely unknown. METHODS: Mice were assigned to sciatic nerve crush injury and no-injury groups and were followed for 3, 7, and 14 days with/without 4-AP or saline treatment. Morphological, functional, and transcriptional properties of skeletal muscle were assessed. RESULTS: In addition to improving in vivo function, 4-AP significantly reduced muscle atrophy with increased muscle fiber diameter and contractile force. Reduced muscle atrophy was associated with attenuated expression of atrophy-related genes and increased expression of proliferating stem cells. DISCUSSION: These findings provide new insights into the potential therapeutic benefits of 4-AP against nerve injury-induced muscle atrophy and dysfunction. Muscle Nerve 60: 192-201, 2019.


4-Aminopyridine/pharmacology , Crush Injuries/physiopathology , Muscle, Skeletal/drug effects , Muscular Atrophy/pathology , Peripheral Nerve Injuries/physiopathology , Potassium Channel Blockers/pharmacology , Remyelination/drug effects , Sciatic Nerve/drug effects , Animals , Crush Injuries/metabolism , Crush Injuries/pathology , Forkhead Box Protein O1/drug effects , Forkhead Box Protein O1/genetics , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/genetics , Mice , Muscle Proteins/drug effects , Muscle Proteins/genetics , Muscle, Skeletal/innervation , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/genetics , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/pathology , Regeneration/drug effects , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Sciatic Nerve/physiopathology , Tripartite Motif Proteins/drug effects , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/drug effects , Ubiquitin-Protein Ligases/genetics
18.
Acta cir. bras ; 34(5): e201900502, 2019. tab, graf
Article En | LILACS | ID: biblio-1010874

Abstract Purpose: To investigate inhibitory effect of Astragalus polysaccharide (APS) on osteoporosis in ovariectomized rats by regulating FoxO3a/Wnt2 signaling pathway. Methods: Postmenopausal osteoporosis (PMOP) animal model was developed by excising the bilateral ovaries of rats. The model rats were administered with APS (200 mg/kg, 400 mg/kg, 800 mg/kg) by intragastric administration once daily for 12 weeks. Bone density, bone metabolism index and oxidative stress index were measured in all groups. Furthermore, the regulation of APS of FoxO3a / Wnt2 signaling pathway was observed. Results: APS has an estrogen-like effect, which can increase bone mass, lower serum ALP and BGP values, increase blood calcium content, and increase bone density of the femur and vertebrae in rats. At the same time, APS can increase the bone mineral content of the femur, increase the maximum stress, maximum load and elastic modulus of the ovariectomized rats, improve oxidative stress in rats by increasing the gene expression of β-catenin and Wnt2 mRNA and inhibiting the gene expression of FoxO3a mRNA. Conclusion: Astragalus polysaccharide can effectively alleviate oxidative stress-mediated osteoporosis in ovariectomized rats, which may be related to its regulation of FoxO3a/Wnt2/β-catenin pathway.


Animals , Female , Osteoporosis/drug therapy , Polysaccharides/pharmacology , Astragalus Plant/chemistry , Wnt Signaling Pathway/drug effects , Forkhead Box Protein O3/drug effects , Osteoporosis/metabolism , Reference Values , Ovariectomy , Random Allocation , Bone Density/drug effects , Gene Expression/drug effects , Reproducibility of Results , Treatment Outcome , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Oxidative Stress/physiology , Wnt2 Protein/analysis , Wnt2 Protein/drug effects , beta Catenin/analysis , beta Catenin/drug effects , Femur/drug effects , Femur/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/analysis , Low Density Lipoprotein Receptor-Related Protein-5/drug effects , Real-Time Polymerase Chain Reaction , Wnt Signaling Pathway/physiology , Forkhead Box Protein O3/analysis
19.
Muscle Nerve ; 57(4): 650-658, 2018 04.
Article En | MEDLINE | ID: mdl-28881481

INTRODUCTION: Muscle wasting is a frequent, debilitating complication of cancer. The impact of colorectal cancer chemotherapeutic oxaliplatin on the development of muscle loss and associated molecular changes is of clinical importance. METHODS: C57BL/6J male mice were treated with oxaliplatin. Total body weights were measured and behavioral studies performed. Hindlimb muscle weights (gastrocnemius and soleus) were recorded in conjunction with gene and protein expression analysis. RESULTS: Oxaliplatin-treated mice displayed reduced weight gain and behavioral deficits. Mice treated over a shorter course had significantly increased STAT3 phosphorylation in gastrocnemius muscles. Mice receiving extended oxaliplatin treatment demonstrated reduced hindlimb muscle mass with upregulation of myopathy-associated genes Foxo3, MAFbx, and Bnip3. DISCUSSION: The findings suggest that oxaliplatin treatment can directly disrupt skeletal muscle homeostasis and promote muscle loss, which may be clinically relevant in the context of targeting fatigue and weakness in cancer patients. Muscle Nerve 57: 650-658, 2018.


Antineoplastic Agents/pharmacology , Gene Expression/drug effects , Muscle, Skeletal/drug effects , Oxaliplatin/pharmacology , Animals , Body Weight/drug effects , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/genetics , Hindlimb , Male , Membrane Proteins/drug effects , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/drug effects , Mitochondrial Proteins/genetics , Muscle Proteins/drug effects , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Organ Size/drug effects , SKP Cullin F-Box Protein Ligases/drug effects , SKP Cullin F-Box Protein Ligases/genetics , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism
20.
Med Sci Monit ; 23: 5793-5802, 2017 Dec 06.
Article En | MEDLINE | ID: mdl-29211704

BACKGROUND Histone deacetylase (HDAC) inhibitors are emerging as a new class of anti-cancer drugs that promote cancer cell apoptosis, and include suberoylanilide hydroxamic acid (SAHA). The aim of this study was to investigate the mechanism of SAHA-induced apoptosis in human prostate cancer cell lines, DU145 and PC-3. MATERIAL AND METHODS Cell lines, DU145 and PC-3, were studied before and after treatment with SAHA. The effects of SAHA treatment on cell proliferation were studied using the MTT cell proliferation assay. Annexin-V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining were used to study the effects of SAHA treatment on cell apoptosis. Western blotting, quantitative polymerase chain reaction (qPCR) and short interfering (si)RNA assays were performed to study the effects of SAHA treatment on apoptotic and cell cycle proteins and the Akt/FOXO3a signaling pathway. RESULTS Treatment with SAHA inhibited cell proliferation in human prostate cancer cell lines DU145 and PC-3 cells in a dose-dependent way. Cell cycle analysis and Annexin-V FITC/PI staining showed that treatment with SAHA resulted in G2/M cell cycle arrest and increased cell apoptosis in a dose-dependent way. Also, treatment with SAHA reduced the protein expression levels cyclin B and cyclin A2 and promoted the activation of FOXO3a by inhibiting Akt activation. Western blotting, the siRNA assay, and qPCR showed that FOXO3a, the Bcl-2 family of proteins, survivin, and FasL were involved in SAHA-induced apoptosis in prostate cancer cells grown in vitro. CONCLUSIONS Treatment with SAHA promoted apoptosis via the Akt/FOXO3a signaling pathway in prostate cancer cells in vitro.


Hydroxamic Acids/metabolism , Annexin A5 , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Forkhead Box Protein O3/drug effects , Forkhead Box Protein O3/metabolism , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylases , Humans , Hydroxamic Acids/pharmacology , Inhibitor of Apoptosis Proteins , Male , Prostatic Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/drug effects , Signal Transduction/drug effects , Vorinostat , Xenograft Model Antitumor Assays
...